Page 1 of 20

sparkfun

TART SOMETHING

ESP32 Environment Sensor Shield Hookup
Guide

Introduction

The ESP32 Environment Sensor Shield provides sensors and hookups for
monitoring environmental conditions. This tutorial will show you how to
connect your sensor suite to the Internet and post weather data online.

SparkFun ESP32 Thing Environment Sensor

Shield
® DEV-14153

Required Materials

You'll need the ESP32 Thing board to interface with this shield. Other
microcontroller boards will work, but since the shield is designed to stack on
the ESP32 Thing, interfacing with them will be difficult.

You'll also need some means of connecting the two boards together. While
it's possible to solder them together using snappable male header pins, it
makes good sense to use female headers on one of the boards board so
the boards can be separated again later if needed.

SparkFun ESP32 Thing Break Away Headers -
@® DEV-13907 Straight
@ PRT-00116

Female Headers
@® PRT-00115

The ESP32 Environment Sensor Shield comes with connections for our
weather station. You may also wish to add a soil moisture sensor, which
you’ll need two three-position 3.5mm screw terminals and enough wire to
connect the sensor to the board.

Weather Meters SparkFun Soil Moisture
O SEN-08942 Sensor
@® SEN-13322

Screw Terminals 3.5mm
Pitch (3-Pin)
@© PRT-08235

Page 2 of 20

Tools

At a minimum, you’ll need a soldering iron and some solder. You may need
a small screwdriver for attaching the wire to the screw terminals between
the soil moisture sensor and the sensor shield. Our pocket screwdriver and
screwdriver kit both have bits that will work wonderfully for that purpose.
They’re also just handy to keep around!

! [

®

\/-.
Soldering Iron - 30W (US, Solder Lead Free - 15-gram
110V) Tube
O TOL-09507 ® TOL-09163

-
> S
&7 S
TN
Tool Kit - Screwdriver and Pocket Screwdriver Set
Bit Set ®© TOL-12891

® TOL-10865

Suggested Reading

If you have not yet used the ESP32 Thing Development Board, check out
this guide first.

ESP32 Thing Hookup Guide

OCTOBER 27, 2016

An introduction to the ESP32 Thing's hardware features, and a primer on
using the WiFi/Bluetooth system-on-chip in Arduino.

If you aren’t familiar with the following concepts, we recommend checking

Page 3 of 20

out these tutorials before continuing.

How to Solder: Through-
Hole Soldering

This tutorial covers everything you
need to know about through-hole

Analog to Digital Conversion
The world is analog. Use analog to
digital conversion to help digital
devices interpret the world.

soldering.

12C

An introduction to 12C, one of the
main embedded communications
protocols in use today.

Hardware Overview

The ESP32 Environment Sensor Shield incorporates three sensors capable
of measuring five different environmental variables. It also provides
connections for several other sensors that can be connected if so desired.

Onboard Sensors
All of the onboard sensors are connected to the ESP32 via I2C connection.
Pressure, Humidity, and Temperature

The first onboard sensor is a Bosch BME280. This sensor measures
relative humidity, temperature, and barometric pressure. On the back side
of the board is a solder jumper (labeled JP1) which can be closed to
change the I2C address of the chip. By default the address is 0x77; closing
the jumper forces the address to 0x76.

1

LN c5eaz

Page 4 of 20

Air Quality and Temperature

Next is the ams CCS811 air quality and temperature sensor. Note the
routed out region around this sensor. That provides a buffer against thermal
changes stimulated by the circuitry on the rest of the PCB. As with the
BMEZ280, it is possible to change the 12C address of this sensor. Closing
jumper JP2 on the reverse side of the board causes the sensor to adopt
address 0x5A, and by default it will be 0x5B.

Luminosity

The last onboard sensor is the Broadcom APDS-9301. It's capable of
detecting and reading light levels from nighttime through broad daylight.
Keep in mind that the sensor will saturate if exposed to direct sunlight. By
defaul, the sensor will have an I2C address of 0x39. By adding a solder
jumper toward 0 on the jumper pads labeled JP3 on the back of the board,
the address can be changed to 0x29. By adding a solder jumper toward 1,
the address can be set to 0x49.

Jumpers on Back of the Board

There are five jumpers on the back of the board.

Page 5 of 20

=L

LTIl

ronG]
N

.
=

2322 L H.

SR R R T *EeHq

£

Here’s what they do:

JP1 - Close this jumper with a solder blob to change the 12C address of the
BME280 sensor from 0x77 to 0x76.

JP2 - Close this jumper with a solder blob to change the 12C address of the
CCS811 sensor from 0x5B to 0x5A.

JP3 - Close the 0 half of this jumper with a solder blob to set the address of
the APDS-9301 sensor to 0x29. Close the 1 half of this jumper to set the
address to 0x49. If you accidentally bridge the entire jumper, the address
will be 0x29, but nothing bad will happen.

JP4 - Cut this trace to disable the onboard NTC thermistor used by the
CCS811 for temperature compensation. If you do this, you must add an
external NTC thermistor for the CCS811 to work properly.

JP5 - Cut the traces on this jumper to disable the pull-up resistors for the
12C bus.

Optional, off-board Sensors

There are connections for five off-board sensors as well: wind speed and
direction, rainfall amount, temperature, and soil moisture.

Wind Speed and Direction

Coupled with SparkFun’s weather station, the wind speed and direction can
be measured by counting pulses per second and by measuring the
resistance of a discrete step potentiometer. The pins for these two functions
are connected to ESP32 Thing pins 14 (speed) and 35 (direction).

One tick per second corresponds to 1.492mph (2.40 kph) of wind speed.
Obviously, the orientation of the weather meter determines what the
resistance is for a given position. Sixteen positions are available and the

Page 6 of 20

voltage corresponding to each can be found on page 2 of the weather
meter’s datasheet. Our example code provides you with a solid example on
using the direction sensor, as well.

Soil Moisture

SparkFun’s soil moisture sensor can be connected to the shield and
monitored via analog voltage conversion. The sensor connects to pin 26 of
the ESP32 Thing.

Rainfall

The weather station will also provide you with a rainfall gauge. Much like
the wind speed gauge, the rainfall gauge generates ticks to tally the amount
of rain that has fallen. Count ticks to determine how much rain has fallen
recently. Each tick represents 0.011" (0.28mm) of rainfall. This sensor is
connected to pin 25 of the ESP32.

External Temperature

If you so desire, you can connect one of our TMP36 external temperature
sensors to the board at this location. Connecting it through a short wire will
allow you to measure temperature outisde of the enclosure that the rest of
the system is in. It measures with a 10mV/deg C output voltage. It is
connected to pin 13 of the ESP32.

Page 7 of 20

Page 8 of 20

Any 12C Sensor

We’ve provided a header which will allow you to connect any other 12C
sensor or device you may think useful to the board. In fact, the pinout of this
header is such that many SparkFun 12C boards can be directly attached
without any wire order change at all!

Hardware Assembly

As previously mentioned, it's a good idea to use headers (both male and
female) to connect the two boards. Here we’ll show you a bomb-proof
method to solder down the headers and making sure that they’re true and
square so it's easier to connect (and disconnect) the two boards.

Trim the Headers

When you purchase male and female headers, they'll be too long for the
ESP32 Thing and Environment Sensor Shield. You'll need to trim them
down to an appropriate length. This means 20 pins each.

For the male headers, this is relatively easy—they’re designed to be trimmed
or snapped to length. They come in 40-position pieces, so you'll only need
to order one and then snap it in half.

"

For the female headers, however, things are a little trickier. In order to trim
to the appropriate length, you'll lose one pin since these come in 40-
position pieces as well. That means you’ll need to order two of these in
order to get two 20-position pieces, and you'll have two 19-position pieces
left over. Bummer, | know.

The best way to trim the female header pieces is to count out 20 pins, pull
the 21st pin, then use a side cutter to cut the gap between the 20th and
22nd pin.

You must be careful when cutting the header to center your snip. An off
center cut may result in the mechanical portion of the header escaping or
losing some of its retention force.

Optionally, you may take a file, piece of sandpaper, or some other
sanding/grinding tool to sand down the end of the header so that it's
smoother. You can do both pieces at the same time by holding them
together and rubbing the ends on the finishing surface.

Install the Male Headers

We’re going to install the male headers on the ESP32 Thing board first.
We’re going to do so “right side up”, with the headers extending down from
the side of the board with no components on it. This is easier than doing it
the other way as the connectors on the component side of the board create
a difficult gap when attempting this method from that side.

First, insert your male headers long-side-down into a breadboard, as shown
below. You can see that we're inserting the headers into the second column
in from the edge—columns labeled as B and | on the breadboard we'’re
using here.

Page 9 of 20

Now, with the headers installed, you can easily drop the ESP32 Thing
board into place on top of them.

If you're new to soldering, check out our through-hole soldering
tutorial. We'll wait here.

If you're new to soldering, you may want to solder just the first and last
position on each side, then pull the board free of the breadboard, to avoid
heat damage to your breadboard. You may find it easier to remove the
board from the breadboard by inserting a flat-edge screwdriver under the
end of the ESP32 and gently levering the board away from the breadboard
by turning the handle of the screwdriver.

Install the Female Headers

Page 10 of 20

Now we need to install the female headers onto the ESP32 Environment
Sensor Shield. We'll do this using the pins we just soldered to the ESP32
Thing.

Take your female headers and place them on the male headers on the
ESP32 Thing, as shown here.

Because we used the breadboard to hold our pins perfectly perpendicular
to the ESP32 Thing board, the pins of the female headers should line up
perfectly with the holes on the ESP32 Environment Sensor Shield.

Be certain you've placed the shield in the proper orientation! The
component side of the shield should be facing the non-
component side of the ESP32 Thing! Double check that the pin
labels on the shield match those on the ESP32 Thing! Failure to
observe these facing rules will make everything horrible and
nothing will work!

Flip the board over before soldering the female header pins.

You may now solder the female header pins to the ESP32 Environment
Sensor Shield just like the male header pins for the ESP32 Thing.

Software

Besides the ESP32 Arduino Core, the ESP32 Environment Sensor Shield
also requires the CCS811, BME280 and APDS-9301 Arduino libraries. Be
sure to grab the libraries from each respective GitHub repositories, or you
can download the files directly from the buttons below:

Page 11 of 20

SPARKFUN CCS811 ARDUINO LIBRARY
SPARKFUN BME280 ARDUINO LIBRARY

SPARKFUN APDS-9301 ARDUINO LIBRARY

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our
installation guide.

If you have not already, make sure to setup your own weather station with
Wunderground. You will need to fill out a form and pick a username &
password in order to receive a station ID. Sensor data from the ESP32
Thing and the ESP32 Environment Sensor Shield can then be pushed to
Wunderground'’s server.

Here we present some example code for the ESP32 Environment Sensor
Shield. This code reads all of the sensors, prints the resulting data to the
serial port once per second, then posts some of the more germane data to
Weather Underground once per minute.

Page 12 of 20

#include
#include
#include
#include
#include

BME280 b
CCS811 ¢
APDS9301

// Variables for wifi server setup
"your_ssid_here";

const ch

const char* password

String I

WiFiClient client;
const int httpPort

const ch

// Variables and constants used in calculating the windspeed.

<SparkFunCCS811.h>
"SparkFunBME280.h"

"Wire.h"

<Sparkfun_APDS9301_Library.h>

<WiFi.h>
me;

cs(Ox5B);
apds;

ar* ssid

D = "wunderground_station_id";
String key = "wunderground_station_key";

ar* host

80;
"weatherstation.wunderground.com”;

volatile unsigned long timeSincelLastTick = 0;

volatile unsigned long lastTick = 0;

// Variables and constants used in tracking rainfall

#define
#define

S_IN_DAY
S_IN_HR

86400
3600
#define NO_RAIN_SAMPLES 2000

volatile long rainTickList[NO_RAIN_SAMPLES];

volatile int rainTickIndex

volatile int rainTicks

int rainLastDay = ©;
int rainLastHour = 0;
int rainLastHourStart
int rainLastDayStart

long sec

sClock =

String windDir =
float windSpeed = 0.0;

// Pin assignment definitions
WIND_SPD_PIN 14

#define
#define
#define
#define
#define
#tdefine

void set

{
delay(

RAIN_PIN 25
WIND_DIR_PIN 35
AIR_RST 4
AIR_WAKE 15
DONE_LED 5
up()

5); // The CCS811 wants a brief delay after startu

Serial.begin(115200);

Wire.b

pinMode (DONE_LED, OUTPUT);
digitalWrite(DONE_LED, LOW);

// Wind speed sensor setup. The windspeed is calculated acco
rding to the number

// of ticks per second. Timestamps are captured in the inte
rrupt, and then converted

// in

pinMode (WIND_SPD_PIN, INPUT);
attachInterrupt(digitalPinToInterrupt(WIND_SPD_PIN), windTic

egin();

to mph.

// Wind speed sensor

Page 13 of 20

k, RISING);

// Rain sesnor setup. Rainfall is tracked by ticks per secon
d, and timestamps of

// ticks are tracked so rainfall can be "aged" (i.e., rain
per hour, per day, etc)

pinMode (RAIN_PIN, INPUT); // Rain sensor

attachInterrupt(digitalPinToInterrupt(RAIN_PIN), rainTick, R
ISING);

// Zero out the timestamp array.

for (int i = @; i < NO_RAIN_SAMPLES; i++) rainTickList[i] =
9;

// BME28@ sensor setup - these are fairly conservative setti
ngs, suitable for

// most applications. For more information regarding the se
ttings available

// for the BME280, see the example sketches in the BME280 1
ibrary.

bme.settings.commInterface = I2C_MODE;

bme.settings.I2CAddress = 0x77;

bme.settings.runMode = 3;

bme.settings.tStandby = 0;

bme.settings.filter = 0;

bme.settings.tempOverSample = 1;

bme.settings.pressOverSample

bme.settings.humidOverSample

bme.begin();

[T
S
N

// CCS811 sensor setup.
pinMode (AIR_WAKE, OUTPUT);
digitalWrite(AIR_WAKE, LOW);
pinMode (AIR_RST, OUTPUT);
digitalWrite(AIR_RST, LOW);
delay(10);
digitalWrite(AIR_RST, HIGH);
delay(100);

ccs.begin();

// APDS9301 sensor setup. Leave the default settings in plac

apds.begin(0x39);

// Connect to WiFi network
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());

// Visible WiFi connected signal for when serial isn't conne
cted

digitalWrite(DONE_LED, HIGH);
}

void loop()

Page 14 of 20

static unsigned long outLoopTimer = 0;

static unsigned long wundergroundUpdateTimer = 0;
static unsigned long clockTimer = 0;

static unsigned long tempMSClock = ©;

// Create a seconds clock based on the millis() count. We us
e this
// to track rainfall by the second. We've done this becaus
e the millis()
// count overflows eventually, in a way that makes trackin
g time stamps
// very difficult.
tempMSClock += millis() - clockTimer;
clockTimer = millis();
while (tempMSClock >= 1000)
{
secsClock++;
tempMSClock -= 1000;
}

// This is a once-per-second timer that calculates and print
s off various

// values from the sensors attached to the system.

if (millis() - outLoopTimer >= 2000)

{

outLoopTimer = millis();

Serial.print("\nTimestamp: ");
Serial.println(secsClock);

// Windspeed calculation, in mph. timeSincelLastTick gets u
pdated by an
// interrupt when ticks come in from the wind speed senso

if (timeSincelastTick != @) windSpeed = 1000.0/timeSincela
stTick;

Serial.print("Windspeed: ");

Serial.print(windSpeed*1.492);

Serial.println(" mph");

// Update temperature. This also updates compensation valu
es used to

// calculate other parameters.

Serial.print("Temperature: ");

Serial.print(bme.readTempF(), 2);

Serial.println(" degrees F");

// Display relative humidity.
Serial.print("%RH: ");
Serial.print(bme.readFloatHumidity(), 2);
Serial.println(" %");

// Display pressure.

Serial.print("Pres: ");
Serial.print(bme.readFloatPressure() * 0.0002953);
Serial.println(" in"

// Calculate the wind direction and display it as a strin

Serial.print("Wind dir: ");
windDirCalc(analogRead (WIND_DIR_PIN));
Serial.print(" ");
Serial.println(windDir);

Page 15 of 20

Page 16 of 20

// Calculate and display rainfall totals.
Serial.print("Rainfall last hour: ");
Serial.println(float(rainLastHour)*0.011, 3);
Serial.print("Rainfall last day: ");
Serial.println(float(rainLastDay)*0.011, 3);
Serial.print("Rainfall to date: ");
Serial.println(float(rainTicks)*0.011, 3);

// Trigger the CCS811's internal update procedure, then
// dump the values to the serial port.
ccs.readAlgorithmResults();

Serial.print("C02: ");
Serial.println(ccs.getC02());

Serial.print("tvoC: ");
Serial.println(ccs.getTVOC());

Serial.print("Luminous flux: ");
Serial.println(apds.readLuxLevel(),6);

// Calculate the amount of rain in the last day and hour.
rainLastHour = 0;
rainLastDay = 0;
// If there are any captured rain sensor ticks...
if (rainTicks > @)
{
// Start at the end of the list. rainTickIndex will alwa
ys be one greater
// than the number of captured samples.
int i = rainTickIndex-1;

// Iterate over the list and count up the number of samp
les that have been
// captured with time stamps in the last hour.
while ((rainTickList[i] >= secsClock - S_IN_HR) && rainT
ickList[i] != @)
{
1--5
if (i < @) i = NO_RAIN SAMPLES-1;
rainLastHour++;

// Repeat the process, this time over days.

i = rainTickIndex-1;

while ((rainTickList[i] >= secsClock - S_IN_DAY) && rain
TickList[i] != @)

{
1--5
if (i < @) i = NO_RAIN_SAMPLES-1;
rainLastDay++;

}

rainLastDayStart = i;

// Update wunderground once every sixty seconds.
if (millis() - wundergroundUpdateTimer >= 60000)
{

wundergroundUpdateTimer = millis();
// Set up the generic use-every-time part of the URL
String url = "/weatherstation/updateweatherstation.php”;
url += "?ID=";
url += ID;

Page 17 of 20

url += "&PASSWORD=";
url += key;
url += "&dateutc=now&action=updateraw";

// Now let's add in the data that we've collected from ou
r sensors

// Start with rain in last hour/day

url += "&rainin=";

url += rainLastHour;

url += "&dailyrainin=";

url += rainLastDay;

// Next let's do wind
url += "&winddir=";

url += windDir;

url += "&windspeedmph=";
url += windSpeed;

// Now for temperature, pressure and humidity.

url += "&tempf=";

url += bme.readTempF();

url += "&humidity=";

url += bme.readFloatHumidity();

url += "&baromin=";

float baromin = ©.0002953 * bme.readFloatPressure();
url += baromin;

// Connnect to Weather Underground. If the connection fail
s, return from
// loop and start over again.
if (!client.connect(host, httpPort))
{
Serial.println("Connection failed");
return;
}
else
{

Serial.println("Connection succeeded");

}

// Issue the GET command to Weather Underground to post th
e data we've
// collected.
client.print(String("GET ") + url + " HTTP/1.1\r\n" +
"Host: " + host + "\r\n" +
"Connection: close\r\n\r\n");

// Give Weather Underground five seconds to reply.
unsigned long timeout = millis();
while (client.available() == @)

{
if (millis() - timeout > 5000)
{
Serial.println(">>> Client Timeout !");
client.stop();
return;
}
}

// Read the response from Weather Underground and print i
t to the console.
while(client.available())
{
String line = client.readStringUntil('\r');
Serial.print(line);

// Keep track of when the last tick came in on the wind senso
r.
void windTick(void)
{
timeSincelLastTick = millis() - lastTick;
lastTick = millis();

// Capture timestamp of when the rain sensor got tripped.
void rainTick(void)
{
rainTickList[rainTickIndex++] = secsClock;
if (rainTickIndex == NO_RAIN_SAMPLES) rainTickIndex = 0;
rainTicks++;

// For the purposes of this calculation, @deg is when the win
d vane

// is pointed at the anemometer. The angle increases in a clo
ckwise

// manner from there.

void windDirCalc(int vin)

{
if (vin < 150) windDir="202.5";
else if (vin < 300) windDir = "180";
else if (vin < 400) windDir = "247.5";
else if (vin < 600) windDir = "225";
else if (vin < 900) windDir = "292.5";
else if (vin < 1100) windDir = "270";
else if (vin < 1500) windDir = "112.5";
else if (vin < 1700) windDir = "135";
else if (vin < 2250) windDir = "337.5";
else if (vin < 2350) windDir = "315";
else if (vin < 2700) windDir = "67.5";
else if (vin < 3000) windDir = "90";
else if (vin < 3200) windDir = "22.5";
else if (vin < 3400) windDir = "45";
else if (vin < 4000) windDir = "@";
else windDir = "0";

}

Note: When connecting to a WiFi network and the Wunderground
server, make sure to modify the variables ssid, password, ID, and
key .

Expected output

Here is a picture of what you should expect upon starting up your ESP32
and letting it connect to WiFi:

Page 18 of 20

[or— Peke oy | | 11500 bad -

The first few lines are just diagnostics from the ESP32, and will be present
at boot time regardless of the application being run. Immediately below the
line “Connecting to sparkfun-guest” you see a series of dots. One dot
appears every half second while the connection is pending, so you can see
from this example that it took approximately 3 seconds for the WiFi to come
online. After that, the various environmental parameters we're looking at
are printed out, along with a timestamp in seconds since the platform was
booted.

Once a minute, the stream of data from the sensors is interrupted by a
connection to the weatherunderground.com servers. Here’s what that
output looks like:

D o o "

tere ey 115200 b

There are two useful pieces of data here. The first, where it says
“Connection succeeded”, shows that a successful connection has been
made to the Weather Underground server. If your internet connection is
down, this will fail.

The second is the one lone line that says “success”. This is the response
from the server after your attempt to post data to it. If this fails, it means that
you connected to the server, but the string you formatted to send to the
server isn’t formatted properly. This shouldn’t be a problem unless you
change the example code.

Resources and Going Further

For more information, check out the resources below:

GitHub Repository: ESP32 Environment Sensor Shield - Design files
and examples.

CCS811 library - Arduino library for the air quality sensor on the
board.

BME280 library - Arduino library for the temperature and pressure
sensor on the board.

APDS-9301 library - Arduino library for the light sensor on the board.
CCS811 Breakout Hookup Guide - For more information on the
CCS811, check out this tutorial.

Page 19 of 20

» BME280 Breakout Hookup Guide - For more information on the

BME280, check out this tutorial.

» Weather Meter Datasheet - Weather Meter Specifications

Need some inspiration for your next project? Check out some of these

related tutorials:

TMPO0OO0O6 Hookup Guide
How to get started reading
temperature with the TMP006
sensor.

TMP102 Digital Temperature
Sensor Hookup Guide

How to connect and use the
SparkFun Digital Temperature
Sensor Breakout - TMP102 with an
Arduino.

HTU21D Humidity Sensor
Hookup Guide

The HTU21D humidity sensor is an
easy to use, digital, low-cost
humidity sensor.

HIH-4030 Humidity Sensor
Hookup Guide

Measure relative humidity with
SparkFun's HIH-4030 Humidity
Sensor Breakout.

Page 20 of 20

https://learn.sparkfun.com/tutorials/esp32-environment-sensor-shield-hookup-guide? ga=2... 7/10/2017

